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1. Introduction 
Our project was inspired by the use of pedals in playing the electric guitar. The three of us play 
the guitar in our spare time and after finishing Lab 9, we realized that MATLAB could be a cool 
tool to implement audio effects into our own music as a budget-friendly and quick way to add 
effects to prerecorded songs. Creating audio effects using MATLAB is not an uncommon idea, 
and we thought it would be interesting to use the techniques we learned throughout this lab to try 
and implement the most common audio effects we could think of, as well as the ones that are the 
easiest to notice for everyday listeners. We decided to go with one effect per member: a lowpass 
filter, echo effect, and flange effect. 
 
2. Description of the Project 
 
Group Member Roles 

 Edreese Basharyar:  Low Pass Filter implementation to filter out noise 
 Abraham Castaneda:  Flange effect implementation 
 Maxwell Stonham:  Echo effect implementation 

 
 
Low-Pass Filter 
One of the most influential concepts in digital signal processing is the design of low-pass filters. 
Low-pass filters can be used to remove high frequency noise from signals. This is because high 
frequency noise is often undesirable in many applications, as it can cause distortion or interfere 
with the desired signal. By using a low-pass filter, the high frequency noise can be removed or 
reduced, leaving the desired low-frequency signal untouched. This feature is very beneficial to any 
audio signal we use that may include any sort of noise or interference. However, there are some 
slight drawbacks that may change the properties of a signal that may not be wanted. While low-
pass filters can be useful for removing high frequency noise, they can also cause some loss of 
quality in the signal.  



This is because low pass filters work by attenuating or blocking high frequency signals, which can 
also include some of the desired high frequency components of the original signal. As a result, the 
output signal may have a slightly lower quality than the original, especially if the filter has a steep 
cutoff or a high attenuation level. 
 
Echo Effect 
The echo effect is a very common effect that is caused by the repetition of an input signal at a 
(normally) lower level. The echo effect can be described in the simple equation below: 
 

y(n) = x(n) + a*x(n-d) 
 
Where x(n) is the input audio, “a” is the gain or decay, x(n-d) is the shifted input audio and y(n) is 
the output signal. The equation describes the echo effect as the input signal added with a decayed 
and delayed version of that same input signal. This echo effect can be implemented on MATLAB 
either using convolution or without convolution.  
 
Flange Effect 
The flange sound effect is achieved by taking a signal, duplicating it, delaying the duplicated signal 
by a small amount, and varying the delay in a sinusoidal manner, after which the original and 
duplicated signal are combined. The variation in the delay difference among the combined signals 
creates an interference pattern in the sound that results in certain frequencies being attenuated 
while others are amplified as the signal plays. The flange effect is often used in rock music to add 
depth to guitar and drum tracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3. Project Function Breakdown Diagrams 
 
Lowpass Filter 

 
Echo 
 

 
Flange 



4. Descriptions, Explanations (schematics and simulations) and Results 
Low-Pass Filter 
Implementation of Low-Pass Filter with MATLAB code: 
%% Low Pass Filter 
clc 
clearvars 
 
% Read the audio file and store sample and sampling rate 
[x,Fs] = audioread('k.mp3'); 
xn = awgn(x,4,'measured');    % Add some white gaussian noise 
X = fft(xn);       % Fourier transform of the signal 
Xmag = abs(X);       % Magnitude of the Fourier transform 
f = (0:length(Xmag)-1)*Fs/length(Xmag);  % Frequency Range 
 
figure(1) 
plot(f, Xmag); 
xlabel('Frequency (Hz)'); 
ylabel('Magnitude'); 
title('FFT of Audio Signal') 
 
% LPF Parameters 
Fpass = 400; 
Fstop = 4500; 
Apass = 1; 
Astop = 90; 
% LPF Implementation  
lpf = designfilt('lowpassfir', 'PassbandFrequency', Fpass, 'StopbandFrequency',... 
Fstop, 'passbandRipple', Apass, 'stopbandAttenuation', Astop, 'sampleRate', Fs); 
y = filter(lpf, xn); 
 
% fvtool(lpf); % visualize freq response of filter 
figure(2) 
subplot(3,1,1) 
plot(x) 
xlabel('n') 
ylabel('Amplitude') 
title('Audio Input') 
 
subplot(3,1,2) 
plot(xn) 
xlabel('n') 
ylabel('Amplitude') 
title('Noisy Audio Input') 
 
subplot(3,1,3) 
plot(y) 
xlabel('n') 
ylabel('Amplitude') 
title('Filtered Audio Input') 
 
 
 
 
 



 
MATLAB FIGURES 

 

 
 
From the above figure, we can see the visualization of the low-pass filter design we have created; 
this custom filter is specifically tuned to the LPF parameters we have set in the figure above. The 
first parameter, Fpass, indicates the frequency at the start of the pass band. The second parameter, 
Fstop, indicates the frequency at the end of the stop band. Based on the figure above, we can see 
how the blue waveform begins to attenuate right at the value of Fstop. The next parameter, Apass, 
indicates the amount of ripple allowed in the passband, where the units are denoted in decibels. 
Since the value of Apass is very small, the ripple can only be seen by zooming in closer to the 
graph. The last parameter we have defined in this graph is Astop, which indicates the attenuation 
in the stop band in the form of decibels. Since we defined the value of Astop as 90, we can observe 
how the blue waveform attenuates at a peak value of ninety decibels. Therefore, we can observe 
how the LPF parameters match the properties of the low-pass filter waveform.  
 
 



 
 
In the figure above, we can observe three different waveforms that indicate the different phases of 
the audio signal. The waveform at the top indicates the original signal after it was read into 
MATLAB. The waveform in the middle indicates the audio signal that is altered with the addition 
of white gaussian noise, a built-in function in MATLAB software. We can observe how the 
amplitude of the waveform is much higher overall compared to the original audio signal. The 
waveform at the bottom indicates the noisy audio signal after it has been passed through the low-
pass filter. We can see a drastic difference in amplitude compared to the middle waveform; we can 
also see that the filtered waveform is very similar compared to its original audio signal. Although 
the filtered audio signal does not have the exact amplitudes as its original, we can see that it has 
succeeded in removing the white gaussian noise.  
 
Echo Effect 
 
Implementation using convolution with a 50% delay and x0.5 gain: 
 
%% Echo Effect 
clc 
clearvars 
 
% Read in the mp3 file of choice 
[x,fs] = audioread('forbidden.mp3'); 
 
d = fs/2;   % Set the delay value 
a = 0.5;      % Set the gain/decay 
 
% The delayed impulse response 
h = [1, zeros(1,d), a]; 
 
% Convolve the audio signal with the impulse response 
y = conv(x, h); 
 
% Play the audio signal with the echo  
sound(y, fs); 
 



subplot(2,1,1) 
plot(x) 
title('Original Signal') 
subplot(2,1,2) 
plot(y) 
title('Echoed Signal') 
  

 
 
From the above code snippet and workspace, after reading in the forbiddem.mp3 files, we see that 
the original audio signal has a sample rate of 48000 that is stored in the variable “fs”. When we 
create our impulse response “h”, we will produce a response that is half of fs (24000) and store 
this value in “d” for our delay. We will also add a gain or decay in our variable “a” to output how 
loud we want our echo. Echoes are generally less loud than the input, so for the example above we 
will keep our decay at 0.5 times smaller than the input, and 0.5 times less than the original sample 
rate.  
 
Shown in the above figure, we see the original signal visually represented on a graph. Below is the 
echoed signal implemented using the convolution code shown above. We see that the echoed signal 
is shown (notice the spikes and the difference between the graphs) to be half the amplitude of the 
original signal and half the time of the original (i.e., delayed by half the original signal). This is a 
successful representation of an echoed audio effect and can be modified depending on how the 
user would like to use the effect. It can either be delayed by a very short period, a very small echo 
audio that is barely heard, or even an echo signal that is much louder than the original. All this can 
be done by simply changing the “a” and “d” variables from the code snippet.  
 
 
 



Implementation using convolution with a 25% delay and x2 gain: 
 
%% Echo Effect 
clc 
clearvars 
 
% Read in the mp3 file of choice 
[x,fs] = audioread('forbidden.mp3'); 
 
d = fs/4;   % Set the delay value 
a = 2;      % Set the gain/decay 
 
% The delayed impulse response 
h = [1, zeros(1,d), a]; 
 
% Convolve the audio signal with the impulse response 
y = conv(x, h); 
 
% Play the audio signal with the echo  
sound(y, fs); 
 
subplot(2,1,1) 
plot(x) 
title('Original Signal') 
subplot(2,1,2) 
plot(y) 
title('Echoed Signal') 

 
 
 
 



As a separate example, we see that modifying the gain and delay values does change the output 
echoed signal shown in the figure above. We see that setting our gain to 2 doubles the amplitude 
and that the echoed amplitude that is doubled is also echoing at 1/4th the sample rate of the original 
audio (i.e., from 48000 to 12000) as shown in the workspace. This shows that our code works to 
gain the echo at any rate the user would like as well as delay the sampling rate at any period.  
 
 
Implementation without convolution with a 50% delay and x0.5 gain: 
 
%% Echo Effect (Loop)  
clc 
clearvars 
 
% Read in the mp3 file of choice 
[x,fs] = audioread('forbidden.mp3'); 
 
d = fs/2;   % Set the delay value 
a = 0.5;    % Set the gain/decay 
 
% Set the length for variable echo 
echo = zeros(size(x)); 
 
for i = 1:length(x) 
    % Apply the delay by shifting the samples 
    if i > d 
        echo(i) = x(i-d)*a; 
    end 
end 
 
y = x + echo;   % Add the echo with the input 
sound(y,fs)    % Play the audio signal with the echo  
 
figure(1) 
subplot(2,1,1) 
plot(x) 
title('Original Signal') 
subplot(2,1,2) 
plot(y) 
title('Echoed Signal') 
 



 
 
We see that a similar result can be done without the use of convolution. Using the same variables 
for the delay and gain, this method simply uses a for loop and if statement to determine when the 
loop should start delaying the input signal and storing that signal into a variable “echo”. This delay 
is done by having the loop only start after the variable “i” is greater than the set delay value chosen, 
in which case it will then start to fill in the initially empty “echo” length with the audio signal. 
This gives the same result as one would expect when doing it using convolution (see the peaks of 
the graph for the delays and amplitude), so it is a matter of preference.  
 
 
Flange Effect 
Implementation of flange in MATLAB (done to replicate the intro to “Barracuda” by Heart): 
 
clc 
clearvars  
 
% Read audio file 
[x, fs] = audioread('Barracuda.mp3'); 
Fx = fft(x,fs); 
 
n = length(x); 
tn=n/fs; 
 
f = 0.21; %sets the frequency of the sinusoid that is delaying the signal 
t = linspace(0,tn,n); 
d = 100; %delay factor 
 
modsin = sin(2*pi*f*t); %delay oscillator 
 
modsin1 = round(d.*modsin') + d; % delay oscillator combined with delay  
% factor 



 
y = zeros(n+d,1); % output matrix prepared 
a = 0.8; %attenuation factor 
 
xn = padarray(x,[d,0],0,'pre'); % original signal matrix size padded to  
% account for delay 
 
% original signal combined with delayed signal 
for i = (d+1):1:n 
    y(i-d,1) = x(i) + a*xn(i-modsin1(i-d)); 
end 
 
% flanged output 
audiowrite('Barracuda_Flanged.wav',y,fs) 
Fy = fft(y,fs); 
 
figure(1) 
plot(abs(Fx)) 
hold on 
plot(abs(Fy)) 
title('FFT of sound file') 
legend('Input (no flange)','Output (flange)') 
 
figure(2) 
spectrogram(x,[],[],[],fs,'yaxis') 
title('Spectrogram of input (no flange)') 
 
figure(3) 
spectrogram(y,[],[],[],fs,'yaxis') 
title('Spectrogram of output (with flange)') 
 
 
As can be seen from the code above, an input sound sample (in this case a guitar riff) is read into 
MATLAB, after which the delay parameters such as the delay factor and the delay oscillator 
frequency are set. The combined delay parameters are encoded in the sinusoidal function 
modsin1, which is later used alongside the attenuation factor to modify xn, an appended copy of 
the original signal.  
 
The frequency of the delay determines how quickly the “wooshing” effect takes place. The delay 
factor determines how much the two combined sound signals will end up cancelling each other 
out (should not be too large or else the flange will not work properly). The attenuation factor 
determines the final amplitude of the duplicate sound signal before it is combined with the 
original sound signal, as this factor is increased, the depth of the flange also increases noticeably. 
The parameters chosen in this specific code were chosen to match the flange settings of the 
original song as closely as possible, but they can be altered as the user pleases. 
 



 
 
Pictured above are the Fast Fourier Transforms of both the unflanged input and the flanged 
output. While there is not a large amount of difference, we can see that there is at least some 
cancellation of the very large spectrum peaks caused by the interference pattern from the flange 
signal combination process. 

 

 
 



 
Pictured above are the spectrograms of the unflanged input and the flanged output. This time, the 
difference between the input and output are more noticeable than they were in the FFT chart, as 
the negative power spectral spikes due to the interference pattern are visible in the second plot, 
while in the first plot they are much smaller in number and in amplitude. 

 
5. Problems Encountered 
As far as problems are concerned, the main problem we encountered was the implementation of 
the equalizer. Initially, we planned to do an equalizer as one of our 3 demonstrations. An equalizer 
is a tool that adjusts audio signals based on the frequencies that the user would like to emphasize 
to shape the overall tone of the audio to emphasize certain frequencies and deemphasize others. In 
other words, an equalizer can boost specific frequencies, reduce them, or cut them out entirely. We 
were having trouble implementing this due to our time constraint, so we ended up doing the next 
most similar thing which was the lowpass filter implementation. The difference between the two 
would be that an equalizer can add or remove frequencies from an input signal, a lowpass filter 
simply filters out higher frequencies and only allows lower frequencies to pass. On top of this time 
constraint, seeing that we had labs implementing the lowpass filter, we thought it would be more 
fitting to add this instead since it is more closely related to what we learned in class.  
 
6. Conclusions 
In conclusion, we observed how audio effects can be implemented to alter the properties of audio 
signals in several ways with the use of MATLAB software. With the inspiration of playing the 
guitar, we created a low-pass filter, an echo effect, and a flange effect that can implement the same 
functionalities as other expensive audio-effect devices can provide. The three effects we have 
chosen are abundantly used in most audio signals, and our creation allows individuals to use these 
effects in a budget-friendly way. Such practices, while applicable to hobbyists, are often employed 
in music post-production to enhance the quality and marketability of the finished product, which 
is a testament to digital signal processing’s very wide range applications. 


