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1. Introduction / Theory of Operation 

Root Locus: 

In control theory and stability theory, root locus analysis is a graphical method for 

examining how the roots of a system change with variation of a certain system parameter, 

commonly a gain within a feedback system. This is a technique used as a stability criterion 

in the field of classical control theory developed by Walter R. Evans which can determine 

stability of the system. The root locus plots the poles of the closed loop transfer function 

in the complex s-plane as a function of a gain parameter. 

 

In addition to determining the stability of the system, the root locus can be used to 

design the damping ratio (ζ) and natural frequency (ωn) of a feedback system. Lines of 

constant damping ratio can be drawn radially from the origin and lines of constant natural 

frequency can be drawn as arccosine whose center points coincide with the origin. By 

selecting a point along the root locus that coincides with a desired damping ratio and natural 

frequency, a gain K can be calculated and implemented in the controller. More elaborate 

techniques of controller design using the root locus are available in most control textbooks: 

for instance, lag, lead, PI, PD and PID controllers can be designed approximately with this 

technique.  

 

The definition of the damping ratio and natural frequency presumes that the overall 

feedback system is well approximated by a second order system; i.e. the system has a 

dominant pair of poles. This is often not the case, so it is good practice to simulate the final 

design to check if the project goals are satisfied. 

 

PD Controller: 

A PD controller is described by the transfer function:  

 

       𝐾(𝑠)=𝑘𝑝+𝑘𝑑𝑠=𝑘𝑑(𝑠+𝑘𝑝 /𝑘𝑑) 
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A PD controller thus adds a single zero to the loop transfer function. The closed-loop 

characteristic polynomial is given as: 

The phase contribution of the PD controller increases from 0∘ 

at low frequencies to 90∘ 
 

at high frequencies. 

For practical reasons, a pole with a short time constant, 𝑇𝑓 

, may be added to the PD controller. The pole helps limit the loop gain at high frequencies, 

which is desirable for disturbance rejection. The modified PD controller is described by 

the transfer function: 

 

                        𝐾(𝑠)=𝑘𝑝+
𝑘𝑑𝑠

(𝑇𝑓𝑠+1)
 

 

The modified PD controller is very similar to a first-order phase-lead controller; it is 

similarly employed to improve the transient response of the system. 

 

PI Controller: 

A PI controller is described by the transfer function:  

 

      𝐾(𝑠)=  𝑘𝑝 + 𝑘𝑖𝑠 = 𝑘𝑝 (𝑠+𝑘𝑖/𝑘𝑝)/𝑠 

 

The PI controller thus adds a pole at the origin (an integrator) and a finite zero to the 

feedback loop. The presence of the integrator in the loop forces the error to a constant input 

to go to zero in steady-state; hence PI controller is commonly used in designing 

servomechanisms. 

The controller zero is normally placed close to the origin in the complex s-plane. The 

presence of a pole–zero pair adds a closed-loop system pole with a large time constant. The 

zero location can be adjusted so that the contribution of the slow mode to the overall system 

response stays small. 

 

The PI-PD Controller: 

The PD and PI sections can be combined in a PI-PD controller as: 

 

         𝐾(𝑠) = (𝑘𝑝+
𝑘𝑖

𝑠
)(1+𝑘𝑑𝑠)   or   𝐾(𝑠)=(𝑘𝑝+𝑘𝑑𝑠) (1+𝑘𝑖/𝑠) 

 

The PI-PD controller adds two zeros and an integrator pole to the loop transfer function. 

The zero from the PI part may be located close to the origin; the zero from the PD part is 

placed at a suitable location for desired transient response improvement. 

The PI-PD controller is similar to a regular PID controller that is described by the transfer 

function: 

 



   

 

   

 

        𝐾(𝑠)=𝑘𝑝+𝑘𝑑𝑠+𝑘𝑖/𝑠  = 𝑘𝑑𝑠2+𝑘𝑝𝑠+𝑘𝑖𝑠 

The PID controller imparts both transient and steady-state response improvements to the 

system. Further, it delivers stability as well as robustness to the closed-loop system. 

 

Design Problem: 
For the unity-feedback system with 

     

             

Do the following: 

a. Design a controller that will yield no more than 25% overshoot and no more than a 2-

second settling time for a step input and zero steady-state error for step and ramp inputs. 

 

Uncompensated System Root Locus: 

First, we draw the root locus of the uncompensated system.  

 

Zeros: None 

Poles: z= -4, z= -6, z= - 10 

Centroid = {sum of poles-sum of zeros} ÷ {#of poles - #of zeros) 

Centroid = [-4-6-10-] ÷3 = -20/3 =  -6.66 

 
  

- We can use MATLAB to draw the root locus: 



   

 

   

 

 



   

 

   

 

 
 

 

Compensated System 
Specifications: 

%OS = 25% 

Peak Time: Tp = 2 sec 

 
 

Damping Ratio = 0.4037 

Steady State error for step input and ramp input = zero 

 

Dominant pole can be obtained from the given specification: 



   

 

   

 

 
In order to make the steady state error zero for step input and ramp input: 

 

 



   

 

   

 

  
Matlab: we can use matlab to get the same results as from the calculation and hand 

plotting. 

 



   

 

   

 

 

 



   

 

   

 

 
Matlab Results of the PID compensated System 



   

 

   

 

 

 
 

 



   

 

   

 



   

 

   

 

 
 So, our new compensated Transfer Function is: 

 
 

Comparison of the Uncompensated and Compensated Systems 

Parameters Uncompenated 

Compensated 

for integration 

(1/s) 

Compensated 

for PD 

k(s+zc)/s 

Compensated 

for PID 

% OS 25% 25% 25.13% 25% 

 Damp ratio  

ζ 
4.036 4.036 4.024 0.4037 

Settling 

Time (sec) 
1.47  2 2 2 

Steady 

State error 

of step 

input 

0.365 0 0 0 

Steady 

State error 

of ramp 

input 

 

∞ 0.576 0.276 0 

 


