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1. Introduction / Theory of Operation
Root Locus:

In control theory and stability theory, root locus analysis is a graphical method for
examining how the roots of a system change with variation of a certain system parameter,
commonly a gain within a feedback system. This is a technique used as a stability criterion
in the field of classical control theory developed by Walter R. Evans which can determine
stability of the system. The root locus plots the poles of the closed loop transfer function
in the complex s-plane as a function of a gain parameter.

In addition to determining the stability of the system, the root locus can be used to
design the damping ratio () and natural frequency (wn) of a feedback system. Lines of
constant damping ratio can be drawn radially from the origin and lines of constant natural
frequency can be drawn as arccosine whose center points coincide with the origin. By
selecting a point along the root locus that coincides with a desired damping ratio and natural
frequency, a gain K can be calculated and implemented in the controller. More elaborate
techniques of controller design using the root locus are available in most control textbooks:
for instance, lag, lead, PI, PD and PID controllers can be designed approximately with this
technique.

The definition of the damping ratio and natural frequency presumes that the overall
feedback system is well approximated by a second order system; i.e. the system has a
dominant pair of poles. This is often not the case, so it is good practice to simulate the final
design to check if the project goals are satisfied.

PD Controller:
A PD controller is described by the transfer function:

K(S)=kp+ ds=hd s+ hp—1 )
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A PD controller thus adds a single zero to the loop transfer function. The closed-loop
characteristic polynomial is given as:

The phase contribution of the PD controller increases from Qo

at low frequencies to 900

at high frequencies.

For practical reasons, a pole with a short time constant, 7/

, may be added to the PD controller. The pole helps limit the loop gain at high frequencies,
which is desirable for disturbance rejection. The modified PD controller is described by
the transfer function:

_ kas
A/(S)_kp-l-(Tfs+ 1)

The modified PD controller is very similar to a first-order phase-lead controller; it is
similarly employed to improve the transient response of the system.

PI Controller:
A PI controller is described by the transfer function:

K(s)= kp + kis = kp (s+kilkp)ls

The PI controller thus adds a pole at the origin (an integrator) and a finite zero to the
feedback loop. The presence of the integrator in the loop forces the error to a constant input
to go to zero in steady-state; hence PI controller is commonly used in designing
servomechanisms.

The controller zero is normally placed close to the origin in the complex s-plane. The
presence of a pole—zero pair adds a closed-loop system pole with a large time constant. The
zero location can be adjusted so that the contribution of the slow mode to the overall system
response stays small.

The PI-PD Controller:
The PD and PI sections can be combined in a PI-PD controller as:

K(s) = (kp+2)(1+kds) or K(s)=(kp+kds) (1+kils)

The PI-PD controller adds two zeros and an integrator pole to the loop transfer function.
The zero from the Pl part may be located close to the origin; the zero from the PD part is
placed at a suitable location for desired transient response improvement.

The PI-PD controller is similar to a regular PID controller that is described by the transfer
function:



K(s)=kp+kds+kils = kds2+kps+kis
The PID controller imparts both transient and steady-state response improvements to the
system. Further, it delivers stability as well as robustness to the closed-loop system.

Design Problem:
For the unity-feedback system with

l{’
G(s) = (s+4)(s+6)(s+10)

Do the following:
a. Design a controller that will yield no more than 25% overshoot and no more than a 2-
second settling time for a step input and zero steady-state error for step and ramp inputs.

Uncompensated System Root Locus:
First, we draw the root locus of the uncompensated system.
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- We can use MATLAB to draw the root locus:
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Compensated System
Specifications:
%0S = 25%
Peak Time: Tp =2 sec
At o o(amp‘naf &t ot 25%,
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Damping Ratio = 0.4037
Steady State error for step input and ramp input = zero

Dominant pole can be obtained from the given specification:
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Matlab: we can use matlab to get the same results as from the calculation and hand

plotting.
#% Root Locus of the PD Compensated System
num2 = [1 2.9544] ;

denz = [1 2@ 124 246 & ];

sys2 = tFf{num2,den2)

figure(l);

rlocus{sys2)

title('Rooct locus of PD compensated System ")

# Damping ratioc line
damping_ratioc = @8.40837;
sgrid({damping_ratic, @)
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Matlab Results of the PID compensated System
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#¥ Root Locus of the PID Compensated System
[1 2.9644 ©.0295] ;

[1 20 124 240 @ @ ];

tf(num2,den2)

figure(3);

rlocus(sys2)

title('Root Locus of PID compensated System

num2 =
den2
SYs2d =

% Damping ratio line
damping_ratic 8.4837;
sgrid(damping ratic, @)

")

Root Locus of PID compensated System
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1 %% Step Response of the PID Compensated System

2 numg=[-2.925 -@.01];

3 deng=[& @8 -4 -& -18];

4 K=294.7%;

5 G=zpk(numg,deng,K)

= T=Ffeedback{G,1);

7 figure(4)

8 subplot{2,1,1)

= step(T)
1e title("Step Response of the PID Compensated System’)
11 %% Ramp Response of the PID Compensated System
1z Ta=tft([1],[1 @]);
1=
14 subplot{2,1,2)

15 step({T*Ta)

16 title( "Ramp Response of the PID Compensated System’)
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Step Response of the PID Compensated System
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So, our new compensated Transfer Function is:

k(s+2.9544)(s+0.01)

Gr(s) =

s2(s5+4)(s+6)(s5+10)

Comparison of the Uncompensated and Compensated Systems

Compensated | Compensated Compensated
Parameters | Uncompenated | for integration for PD for PID
(1/s) K(s+zc)/s
% OS 25% 25% 25.13% 25%
Dam'z ratio 4.036 4.036 4.024 0.4037
Settling
Time (sec) 147 2 2 2
Steady
State error 0.365 0 0 0
of step
input
Steady
State error
of ramp 0 0.576 0.276 0
input




