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Abstract — Generative Adversarial Networks (GANs) have 

been prominent within the past decade since its development in 

2014 and have been mainly used in the generation of training 

models, realistic image, video, and audio generation, and 

general applications that involve the generation and 

construction of datasets. This deep generative model (DGM) was 

developed to replace other previously used DGMs, such as the 

Markov Chain Monte Carlo (MCMC)-based algorithms that 

suffer from slow, computationally intensive, inaccurate, and 

unclear datasets when sampling in higher dimensional spaces. 

GANs were developed to counter these problems to generate 

faster and more accurate datasets by incorporating two 

adversarial models, the generative and discriminative models, to 

compare whether the data generated was real or not. However, 

GANs still suffer from issues such as mode collapse, training 

instability, and non-convergence that limits its potential. 

Diffusion models are a much more recent generative model that 

has been increasingly popular, mainly known for being used in 

Stable Diffusion and the DALL-E image models used to generate 

hyper-realistic images from text. This model works by adding 

gaussian noise to its training data, and learning to recover it by 

reversing this process, or denoising. This method has also been 

increasingly popular within the medical field for its robustness 

and lack of problems that GANs suffer from. This paper will 

focus on the comparison between the two prominent generative 

machine learning models of the past decade, the GANs and 

Diffusion models, how they differ, the tradeoffs, advantages of 

the two, and applications, primarily within medical imaging.  
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I. INTRODUCTION 

Deep generative models are a class of machine learning 
models and techniques that generate new data by learning the 
previously trained data’s probability distribution [1]. 
Generally, DGMs train a generative model which mimics the 
distribution of the data that is being trained on and tries to 
generate a similar distribution to predict how the data is 
produced. Generative models are primarily used in image 
synthesis (inpainting, text-to-image applications), video 
synthesis (pixel prediction for blurred frames), audio and 
music synthesis, computer graphics (3D rendering, texture 
generation, simulations), and medical applications (image 
generation and segmentation).  

Early on, most of these methods used Energy-Based 
Models (EBMs) which were introduced in the 1980s and used 
energy functions to model data distribution. EBMs utilized 
Markov Chain Monte Carlo (MCMC) algorithms, which 
combine Markov chains and Monte Carlo sampling to predict 
samples over a given target distribution by calculating the 

gradient of log-likelihood [2]. However, this training process 
is slow and iterative and does not work well in higher 
dimensions due to the increased number of parameters 
needed. These limitations inspired the discovery of techniques 
that were computationally more efficient, which is when 
Variational Autoencoders (VAEs) and Generational 
Adversarial Networks (GANs) were invented. Though VAEs 
are touched on as a brief comparison to add context towards 
the history and development of generative models, GANs and 
Diffusion Models will be the main focus of this paper.  

II. VARIATIONAL AUTOENCODERS 

Variational Autoencoders (VAEs) are an example of 
generative models that use variational Bayesian interference 
to approximate the probability density using an encoder and 
decoder [3]. This model was inspired by the Helmholtz 
machine, which is a probabilistic model of pattern recognition 
trained by the wake-up sleep algorithm that was proposed in 
1995 [4]. VAEs utilize an encoder to map a given data through 
a multitude of different layers to reduce a data’s 
dimensionality to a latent space, almost like data compression. 
Once “compressed”, the decoder then attempts to reproduce 
the original data through variational interference to sample the 
original data from the latent space.  

This type of model is considered an “explicit” model due 
to it being a probabilistic model, which are models that define 
parameters over a distribution over a random variable and 
specify a log-likelihood function [3]. This is noted since 
GANs are considered implicit models due to it being a 
stochastic model that generates synthetic data directly, or 
implicitly. Fig 1 shows the general architecture that makes up 
a VAE. The major drawback to explicit models would be its 
nature of approximating data through probability distribution, 
which can be problematic. VAEs can have weak 
approximations of the posterior distribution and the tendency 
to oversimplify this distribution which can lead to problems 
with the quality of the samples being reconstructed. These 
drawbacks are where implicit models are desired. 

 

Fig. 1. General architecture of the VAE. The encoder adopts a recognition 
model to approximate the posterior distribution. The decoder adopts a 
generative model to map the latent variable z to the data x. The VAE trains its 
generative model to learn a distribution to be near the given data by 
maximizing the log-likelihood function. [5] 



 

 

III. GENERATIVE ADVERSARIAL NETWORKS  

Generative Adversarial Networks (GANs) is a recent 
model that was introduced by Goodfellow et al [6] in 2014 that 
helped mitigate the issues that MCMC-based models had. 
GANs use two neural networks: a generative model 
(generator) and a discriminative model (discriminator), to 
train the overall model based on a minimax zero-sum game 
[7]. The Generator is trained to produce synthetic or fake data 
based off of the real data that it is trained on, while the 
Discriminator is trained to identify whether or not the data 
being produced is real or fake. The Generator continuously 
trains itself to produce data that is as real as possible, and the 
Discriminator trains itself to identify fake or real data until the 
Generator reaches a point where it produces data that is 
seemingly so real that the Discriminator cannot tell is fake. 
This iterative process eventually produces synthetic data to be 
as identical as the original data as possible. The convergence 
of this process (or lack thereof), however, can cause problems 
and instability since mode-collapse and non-converging 
gradients still occur [7], which will be discussed later in the 
paper.  

Two types of GANs have been proposed, unconditional 
and conditional GANs. Unconditional GANs were the 
originally proposed GANs that utilize a multilayer perceptron 
to create a probabilistic model taking latent noise variables z 
and observed real data x as inputs. Studies have shown, 
however, that using convolutional neural networks (CNNs) 
has been shown to be more effective than MLPs for capturing 
image features [5]. The downside to unconditional GANs is 
that the user has no control on what to generate since the only 
input is the random noise vector z. Studies have shown that 
adding in a new conditional input y of additional information 
(image specifications, labels, text, etc.) can adjust the 
generated results to match a user’s specification.  

 

Fig. 2. Top: Unconditional GAN Structure. Bottom: Conditional GAN 
Structure. Z denotes the random noise, G represents the generator, and D as 
the discriminator. Y is the additional variable added in for new information to 
get more user-specified results. [5] 

 

A. Issues 

GANs suffer from training instability, which occurs when 

either generator or discriminator cannot reach a stable 

equilibrium and causes oscillations or non-convergence from 

simultaneous iterations during training and optimization [8]. 

This instability prevents the generator from generating 

samples that are similar to the images being fed into the 

model, which also causes a phenomenon called mode 

collapse.  

Mode collapse (also known as the missing mode problem) 

is a prominent issue when it comes to training GANs. This 

occurs when the generator fails to capture important peaks 

present in the data distribution (known as modes) and 

struggles to produce a diverse range of outputs and starts to 

produce a very limited set of outputs that is repetitive and 

does not fully reflect the overall set of data that it was initially 

trained with. [9]. This results in the GANs having less 

variability than the training data that was sampled originally.  

 
Fig. 3. Top: GAN Training with a MNIST dataset showing good 

convergence. Bottom: The same training done with discriminator overfitting, 

showing mode collapse [10].  

 

Fig 3 shows GAN training for an MNIST dataset, which 

is a dataset of handwritten digits between 0-9, generally used 

for machine learning tasks such as classification and 

generative modeling (used in this case). The top graph shows 

that the function representing our desired output manages to 

reach a local maximum at k=0 for every real datapoint (good 

convergence). When a generated sample falls within the 

range of a real datapoint, gradient updates will move it closer 

towards the real datapoint, and these local maxima being 

present in different regions of the data space moves the 

generated samples in different directions to distribute them 

throughout the space and prevents mode collapse. The bottom 

graph, however, shows how discriminator overfitting can be 

problematic to training GANs and cause mode collapse (seen 

by the inaccuracy of the image being generated). Notice the 

graphs are much sharper here than they were previously, 

which is caused by discriminator overfitting on the real 

datapoints, which is problematic since now the scores of 

nearby datapoints approach zero. This causes flat regions 

which prevents the generated samples to move towards the 

real datapoints, which limits the space that the generated 

samples can effectively be distributed through, causing the 

diversity of generated samples to decrease which triggers 

mode collapse. The local maxima need to have a wide shape 

(as opposed to sharp edges) to allow the generated samples to 

move towards different directions to prevent mode collapse 

from occurring [10].  

Methods to prevent these issues have been proposed in the 

past and is a current area of research. Possible methods to 



 

 

prevent mode collapse could be to use better metrics to 

improve training to reach better optima, or to use multiple 

generators to capture more modes within the data distribution 

[8]. However, alternative generative models have also been 

proposed as an alternative to having to solve the current 

problem of mode collapse by developing a completely new 

method of generating data, through diffusion models.  

 

IV. DIFFUSION MODELS  

Diffusion models are an even newer form of deep 
generative models that show to be even more promising than 
previous DGMs. They are a class of probabilistic generative 
models [11, 12] that is trained by adding and removing 
Gaussian Noise to a given data structure. This procedure is 
done through forward diffusion (by adding Gaussian Noise to 
a given data structure to destroy it) and then reversed through 
reverse diffusion (removing the noise added to reconstruct the 
data structure). The addition of noise is gradual per iteration, 
starting small, and adds more noise as the process goes on 
until the training data is pure Gaussian noise [11]. The same 
process is done when reverse diffusion occurs, removing noise 
gradually per iteration, until the data is reconstructed as 
similar as the original data was. Three main formulations of 
the diffusion models are discussed in this paper: Denoising 
Diffusion Probabilistic Models (DDPMs), Score-Based 
Generative Models (SGMs), and Stochastic Differential 
Equations (SDEs).  

Diffusion models have recently become the new 
prominent generative model, overtaking GANs in terms of 
improving tasks and challenges involving generative 
applications since they don’t suffer the problems that GANs 
are prone to having. As of the past few years, diffusion models 
have also shown to be extensively used in the medical field 
[13] and the later sections of the paper will also discuss the 
contributions made in this field.  

Despite DDPMs being a having a more robust framework 
for image generation as well as reliably covering multi-modal 
data distributions, it comes at a high computational cost during 
training and interference in order to generate high-quality and 
diverse outputs [14]. Methods to improve diffusion models 
have been to enhance empirical performance and extend 
model capacity [12]. The three models discussed in this 
section use the same approach as previously mentioned, that 
is by iteratively adding noise to a given data structure and 
removing it through a similar process to try and generate 
synthetic data as close as it can to the real data it was trained 
on. Fig 4 shows a visual representation of a diffusion model. 

 

Fig. 4. A visual representation of the process of training diffusion models. The 
sample image is fed into the model, and Gaussian noise is iteratively added 
until the image is deconstructed. The process is then reversed to attempt to 
replicate the same image. The graph to the right illustrates the denoising step 
in the reverse process, generally requiring estimating the noise function which 
is a gradient pointing to the directions of data with higher likelihood and less 
noise [12].  

A. Denoising Diffusion Probabilistic Models (DDPMs) 

Denoising Diffusion Probabilistic Models (DDPMs) are a 
class of latent variable models which were inspired by the 
non-equilibrium thermodynamics theory [11, 15]. Latent 
variable models (LVMs) are a type of statistical model that 
uses latent variables, which are hidden, unobserved variables, 
to define the structure of observed data, which also categorizes 
all diffusion models. DDPMs are considered probabilistic 
modelling since they use the distribution of the trained data to 
produce similar, identical versions of the real data [16]. 
During the training phase, DDPM uses a maximum likelihood 
estimation (MLE) to maximize how likely it is to produce 
clean images after noise has been added onto it during training 
[16].  

 

 

Fig. 5. Top: Reverse diffusion process for 8 Gaussian datasets. Bottom: 
Reverse diffusion process for an MNIST dataset. Note how the reverse 
process starts from noise and iteratively adds steps of denoising to generate 
samples that resemble the true distribution [17] 

Fig 5 shows a visual example of the reverse diffusion 
process. How well the DDPM is trained, and its performance 
would also be heavily dependent on the initial random noise 
used for sampling. To capture all modes in the distribution, the 
noise should be sampled from a range that covers the 
boundaries of the distribution in the synthetic dataset. For 
image data, it is generally advised to normalize inputs to the 
range [-1,1] and sampling noise from a Gaussian distribution 
that covers this range is recommended. This helps the DDPM 
to effectively model the entire data distribution [17].  

B. Score-based Generative Models (SGMs) 

Score-based Generative Models (SGMs) differ from 

DDPMs since on top of adding and removing Gaussian noise 

to an image, the model also simultaneously estimates the 

score function for all noisy data distributions [12]. This 

estimation uses a model called Noise-Conditioned Score 

Networks (NCSN) [12], to estimate and sample a score based 

on the logarithmic data density (the gradient of the log-

density function at the input data point) [18]. On top of score-

based sampling, this model also uses the concepts of 

Langevin dynamics [15, 18] which in physics is a stochastic 

method used to predict the motion of particles in a system 

which are affected by the drag force of the given system. 

Similarly, in terms of machine learning, the gradient of our 

log density can be seen as the drag force which affects a 

random sample through the data space into regions with high 

data density [11]. The sampling method based off of this is 

called Annealed Langevin Dynamics (ALD), which is a 

process that starts with noting the scores of the highest noise 

levels, and gradually annealing (or reducing) the noise levels 

until it is small enough to be indistinguishable from the 

original data distribution [18]. 

 



 

 

C. Stochastic Differential Equations (SDEs) 

Stochastic Differential Equations (SDEs) is a method of 

generalizing both DDPMs and SGMs since they are both 

continuous and are solutions to SDEs [11, 12]. The main 

difference between SDEs and DDPMs is that SDEs use a 

framework that is continuous, while DDPMs are discrete. 

This method offers high precision and flexibility but can be 

inefficient and impractical due to its high computational cost, 

which is why DDPMs are generally preferred.  

 

V. APPLICATIONS OF GENERATIVE MODELS 

Generative models have been heavily researched on and 

optimized over the past few years to be able to generate high-

quality synthetic images, human-like natural language, 

highly diverse human speech, and numerous other audio and 

video applications. They are popularly used primarily in 

imaging tasks, such as image-to-image translation, 

style/texture transfer, image super resolution, or image 

generation from text prompts. While numerous fields use 

generative models, such as in computer vision, entertainment, 

games, music production, natural language processing, 

healthcare, and more, this paper will focus on applications 

that relate to images as opposed to video or audio generation. 

This section will discuss some popular applications in 

entertainment that heavy research is being conducted in, 

while later sections will focus on its applications within the 

medical field.  

As of 2021, GANs held the state-of-the-art on most image 

generation tasks as measured by sample quality metrics such 

as FID (Fréchet Inception Distance), Inception Score, and 

Precision [19], which are widely used metrics for evaluating 

the quality of generative models, such as image generation. 

Diffusion models then started becoming popular due to their 

similar ability to produce high-quality images while offering 

desirable properties such as distribution coverage, stationary 

training objective, and easy scalability. Diffusion models also 

held the state-of-the-art on CIFAR-10, but still lagged behind 

GANs for generating difficult datasets like LSUN and 

ImageNet [19]. However, heavy research is currently being 

done on diffusion models to see whether or not they will 

surpass GANs in terms of their image generation capabilities.  

Image-to-image translation (I2I) is a popular application 

of generative models and refers to the conversion of different 

types of images and merging them into one to mesh the major 

structures and context of two or more images. This is done by 

mapping different image domains and generating a mix of the 

images that were analyzed within the model [5].  For 

example, an image of a dog might want to be converted to an 

image of a cat, so a user would then decide to merge two 

images together (one that is the subject image that outlines 

the dogs major characteristics such as face shape or color, and 

another that is an image of a cat) to try and make the initial 

image have the design and outlines of the second image.  

Style/Texture Transfer is another popular use of 

generative models that is very similar to I2I but differs 

slightly. They can be compared by the following use case: I2I 

directly converts the input image from the source domain to 

the target domain, while style transfer generates a stylized 

image from the content image with the style image as 

reference [20]. An example would be to convert a realistic 

image of a person to a sketch-like image by feeding into the 

model two images, one of a real person, and another of a 

sketch of something. The model will then try and match the 

face of a person to make it look like it was sketched. This type 

of translation can even be utilized in the medical field by 

converting architectural drafts into lifelike images for 

different design and training applications [7]. Fig 6 shows a 

visual example of the comparison between I2I and style 

transfer applications.  

Super resolution is another application that uses a model 

to enhance the resolution of an image. In recent years, super 

resolution has seen significant advancements in both GANs 

and DDPMs. Given a low resolution or blurry image, super 

resolution is a technique that increases the dimensions of an 

image, by upscaling the pixel density while preserving the 

characteristics and details of the original image to produce 

sharper details and tones when compared to the original 

image being fed into the model. Text-conditioned super 

resolution also differs from pixel-based natural image-

focused super resolution by incorporating textual 

descriptions, such as a dedicated multi-modal large language 

model, to automatically caption input images with non-image 

super resolution specific captions at a noticeable performance 

boost [14]. With how developments have been made in 

training and scaling DDPMs, diffusion models are surpassing 

GANs for all these applications, especially due to the 

problems that GANs suffer from. The comparison between 

the two models in this application will be discussed in the 

next section of this paper.  

 

Fig. 6.  (a) Shows I2I translation with reference. The left side of the image is 
the input image, and the right side is the generated image, given a text 

prompt. (b) Shows I2I translation without reference, but instead using a 

reference image. The first row is the reference image, the second row is the 
generated image. (c) Shows style transfer. The first column is the style that 

is referenced, the first column is the input image. Everything else is the 

generated image with the input and reference merged together [20]. 



 

 

Perhaps the most popular system in image synthesis and 

generation that has gained popularity within the past year or 

two would be the widely known Stable Diffusion (released in 

2022 by Stability AI) and DALL-E 2 (released in 2022 by 

OpenAI) models. Both these models are relatively recent and 

are based on DDPMs to generate their images through text-

to-image synthesis and have become popular to mainstream 

media due to its ease of access and extremely realistic outputs 

when generation images based off text prompts. As two 

highly successful generative models, Fig 7 shows a 

comparison between these models through the FID score 

when generating realistic human faces. 

 

Fig. 7. FID score comparisons between real images, Stable Diffusion, 

DALL-E 2, and Midjourney (image generation model created by an 

independent research lab). Left: FID score of models over random sets of 
5000 faces. Right: FID score of models over a random set of 676 faces. 

Results are averaged over 10 runs [21].  

 

We can note from Fig 7 that these models produce 

realistic images, arguably comparable to real images. Due to 

these impressive results, ethical concerns have been 

addressed due to implications that might relate to 

discrimination, privacy, job displacement, and other 

unintended consequences [22]. Due to its recent inception, 

current development is still being made to implement 

effective regulation and government framework regarding 

the use of these models to ensure responsible AI practices are 

being practiced as we move towards the increasing growth 

and development of generative models.  

 

VI. MODEL COMPARISONS  

This section of the paper will primarily discuss the 
comparisons between GANs and DDPMs. General 
comparisons between image generation in entertainment will 
be discussed in this section, while a focus on biomedical 
applications is going to be discussed in the section after this. 
To begin are some figures for general comparisons between 
GANs and DDPMs. Note that Figs 7 and 8 showcase rather 
extreme comparisons between the two models since both these 
figures emphasize the problem that GANs suffer from, that is 
mode collapse.  

The top half of Fig 8 shows us a comparison of 8 
Gaussians shaped as a circle (shown as our original dataset to 
the right). We can note that the red samples are consistently 
generating fairly close representations, whereas the green 
samples are shown to have trouble generating certain modes, 
regardless of how many iterations there are. This is a clear 
drawback to the GANs as this is a visual example of mode 
collapse. We can clearly see here that the model struggles to 
capture all the data distribution and fails to produce a diverse 
range of dataset, limiting its output.  

Similarly with the bottom half, the GAN struggles to 
produce accurate representations of the given dataset. This 
showcases the issues that GANs can experience but note that 

not all GANs have a tendency to experience mode collapse. 
Factors including poor weight initialization, improper 
learning rates, or insufficient training times are some factors 
that can affect the tendency for a GAN to experience this 
phenomenon.  

Fig. 8. Samples of DDPM (Red) and GAN (Green) [17] 

 

Fig. 9. MNIST Dataset Comparison between GANs and DDPMs [17] 

 Fig 9  shows another comparison between the models 
using the MNIST dataset. We can note that the repetitiveness 
due to mode collapse in GAN models is shown more clearly 
with the continuous generation of the numbers “1” and “9”, 
whereas the diffusion model is shown to produce a reasonably 
good representation of a variety of numbers within this range. 

Fig. 10. Visual comparison between GAN and Diffusion Model in the 
application of super resolution [14].  



 

 

 The authors in Fig 10 [14] conducted a systematic 
comparison between GAN and Diffusion Model for image 
super resolution (ISR). The research was conducted as a fair 
comparison between the two models by matching the model 
size and training data available during their setup. [14] trained 
their models under a comparable setup using a large-scale 
dataset of 17 million text-image pairs consisting of 1024x1024 
px images of exceptionally high-quality images and image-
text relevance. They trained their models on image segments 
(shown in the figure as a zoomed in portion of their high-
resolution image sample) to increase training efficiency and 
sample variety. Their goal was to produce low-resolution - 
high-resolution image pairs by extracting 256x256 px random 
crops of the original images which are then downscaled to 
64x64 px. Both their GAN and Diffusion Model use the same 
architecture and are identical in terms of parameters. 
However, the slight difference is that their Diffusion Model 
has slightly more parameters due to the group of noisy inputs 
and image condition in the input layer and timestep 
embeddings [14].  

 Their setup also aimed to test the impact of adding text 
conditioning within their super resolution (SR) models. The 
results are shown in Fig 9. They observed that their GAN SR 
model converges very quickly. After several hundred 
iterations, their GAN models achieved equilibrium between 
the generator and discriminator and continued to improve 
steadily until convergence. The Diffusion Model, however, 
showed slower convergence and requiring up to 620,000 
iterations to fully converge. Table 1. Shows a qualitative 
comparison between the models. The metrics used, PSNR 
(Peak Signal-to-Noise Ratio), SSIM (Structural Similarity 
Index Measure), LPIPS (Learned Perceptual Image Patch 
Similarity), and CLIP-IQA (CLIP-Based Image Quality 
Assessment), are widely used in evaluating the quality of 
images. 

 Table 1. Quantitative comparison between GAN, Diffusion SR, and current 
state-of-the-art models on Image Super Resolution. Red shows the best result, 
Blue shows the second-best results.   

 

The results of this research concluded that both GAN and 
Diffusion Models yielded approximately the same quality 
upsampled images with sharp edges, good textures, and small 
details, which is seen in Fig 9. Further experiments were 
conducted, but similar results were seen. [14] expected that 
mode collapse was going to be an issue for GAN-based 
models, but did not encounter any difficulties with 
optimization. They concluded that GANs can achieve the 
quality level of modern diffusion models if trained under the 
same protocol and under similar setup conditions, but with the 
advantage that it has faster training times and single-step 
inference as opposed to the computational-heavy, iterative 
denoising procedure.  

 

VII. GENERATIVE MODELS IN THE MEDICAL FIELD 

The field of healthcare has been shown to have a growing 
interest in generative models such as diffusion models, 
primarily in medical imaging. The medical imaging 

community has seen exponential growth within a number of 
diffusion-based techniques [13, 23]. Modern biomedical 
image analysis using deep learning often encounters the 
challenges of limited annotated data, which is why deep 
generative models have been explored to synthesize realistic 
biomedical images [23]. A big portion of medical image 
analysis often includes image segmentation, also requiring a 
large amount of annotated training data which is time-
consuming and costly [28]. This difficulty of data collection 
procedure, privacy concerns, lack of experts, and requirement 
for authorization from patients creates major delays within the 
annotation process [13]. This section will discuss the 
applications of generative models within the medical field (as 
well as their importance), some which have been touched on 
in previous sections, and some that will be introduced in this 
section. These applications include image reconstruction, 
segmentation, 2/3D generation, anomaly detection, I2I, 
denoising, and more.  

In May 2023, a survey paper was conducted by [13] to 
gather papers published on deep generative models for 
medical imaging to showcase the increasing number of 
articles being published towards this area of research for use 
within the medical field. Fig 11 showcases this increase 
through graphical representation. We can note which 
application diffusion-based models are most commonly used 
within this field, as well as the imaging modalities, and 
popularity in the number of papers that were published within 
the past 3 years. From there being practically nothing in the 
third quarter of 2021, to there being over 40 published papers 
towards the first quarter of 2023, showcasing which 
application is used the most. Note that general image 
generation and segmentation are the most commonly used 
applications. This recent popularity is also most probably due 
to the fact that diffusion models have only recently been 
gaining traction in terms of popularity and efficiency within 
the past few years.  

Fig. 11. The diagrams showcase the published papers within the medical field 
according to their (a) applications, (b) imaging modalities, and (c) number of 
papers published incremented by their year and quarter [13].  

The current problem within the medical field is that many 
datasets suffer from severe class imbalance due to the rare 
nature of some pathologies causing the overall datasets in 
medical imaging to be small compared to natural image 
datasets that are more commonly accessible and easily used to 
train popular models (such as Stable Diffusion and DALL-



 

 

E2). To top this off, national and international patient privacy 
laws such as the Health Insurance Portability and 
Accountability Act (HIPAA) and European legislation pose 
barriers to data sharing across institutions [28], making it 
difficult to have a large pool of data from multiple institutions. 
Earlier studies showcase the use of generative models to create 
synthetic images to expand already existing medical datasets 
using GANs, but the problem lies with its inability to capture 
the full distribution of data causing mode collapse which 
limits the outputs diversity, as well as training instability, 
which was addressed earlier in this paper. Medical images are 
complex and high-dimensional data, so the diffusion model’s 
reliability in generating these images make it very appealing. 
This is a reason why diffusion models have been dominating 
in popularity since they have the ability to not only generate 
high-resolution images without the risks of mode collapse, but 
also denoise images which is extremely useful in the field of 
medical imaging. The synthetic images generated also 
prevents data security concerns that arise when using patient 
data publicly, which is why diffusion models have such a 
promising outlook when utilized in a clinical setting to address 
imaging challenges.  

Fig. 12. Top: Comparison between the EyeQ dataset given and the images 
produced by the ReTree model. Bottom: A comparison between the authors 
DDPM model (right) to another author’s GAN model (left) [24] 

An example of DDPMs being used in the medical setting 
is through the use of retinal image generation and 
segmentation. Image segmentation simplifies the complexity 
of an image by decomposing into meaningful different 
segments [13]. [24] conducted research using GANs and 
DDPMs to generate retinal images by developing their own 
dataset (ReTree) containing retinal images, vessel trees, and a 
segmentation network based on DDPM trained with images 
from this dataset. The DDPM framework proposed used a 
lightweight architecture and training technique that is 
theorized to improve the performance of DDPMs. The 
motivation of this study was due to the difficulty encountered 
using previous learning-based models that resulted in false-
positives and there being a limited difference between vessel 
tress and background. The authors also implemented GANs to 
generate retinal images, but it proved to be problematic when 

training since their models could not generate diverse data due 
to mode collapse, non-convergence, and experiencing 
vanishing gradient due to adversarial training. They proposed 
a DDPM that would mitigate these problems and generate 
more promising results.  

 The top row of Fig 12 shows the generation of retinal 
images that the author of this paper uses based on DDPM. This 
comparison between the dataset and the generated images 
shows that DDPM’s have promising potential when used for 
image generation within the medical field since the images are 
quite identical. The author then compares their DDPM with a 
previously used GAN model in the bottom of Fig 12. Notice 
the comparison between the two models is quite significant. 
Once again, the GAN suffers from mode collapse which 
prevents the model from converging, leading to low quality 
images when compared to the DDPM, which is evidently seen 
from the results by noticing the lack of color and overall 
structure.  

 Quantitatively, Table 2 shows a comparison between the 
two models through the FID and SIGT (Single Image 
Generation Time) in seconds. We can notice here that their 
DDPM outperformed the GAN model that was used, both in 
generation time and FID metric, which compares the 
distributions of features extracted from the real and generated 
images (lower is better). We can also note that Table 3 
compares how well each model is able to be trained based on 
the three publicly available datasets. In all datasets, we can see 
that the DDPM (ReTree) once again outperforms the GAN in 
all the tests.  

 However, the drawback to the proposed DDPM 
framework is that it relies on random noise to generate 
samples and can possibly result in unrealistic images being 
generated. DDPMs simplify assumptions made about the 
probability distribution of the input data, which could involve 
assuming a Gaussian distribution or a certain level of 
smoothness. While these assumptions can help with the 
modeling process, they can also limit the model’s ability to 
accurately capture complex data distributions which can lead 
to the generation of unrealistic images. Failed images showed 
two retinal cups, no retinal cups, color distortion, and overly 
bright regions.  

 The author solved this problem by training a 
discriminative model using real images from a dataset to 
classify real and generated images. This helped filter out the 
unrealistic images that were generated and instead only keep 
the realistic ones within this dataset. Despite this limitation 
that they eventually solved, the overall consensus of this 
research was that the DDPM architecture proposed 
significantly improved overall performance in terms of 
efficiency, computational cost, quantitative and qualitative 
results, also showcasing its superiority when compared to 
GAN models. They succeeded in image generation, synthesis, 
segmentation, and super resolution of retinal vessels, 
showcasing a good model to produce an original dataset that 
bypasses the limitations of GANs and any ethical concerns.  

Table 2. FID and SIGT Comparison between the two models [24]. 

 



 

 

Table 3. Quantitative comparison between 3 publicly available datasets 
(DRIVE, STARE, and CHASE DB1) used to train both GAN and DDPM. 
[24].  

 

 Another research conducted by [25] aims to introduce their 
own DDPM (Medfusion) to evaluate its performance against 
GANs. The paper also emphasizes the drawbacks of GANs 
with their limited diversity and risk of non-convergence. Their 
DDPM model is compared to StyleGAN-3 (as well as other 
GAN models). They propose a conditional latent DDPM for 
medical image generation that was trained from the CRDX 
dataset. Latent DDPM is a variation of conventional DDPM’s, 
but instead of operating directly on high-dimensional pixel 
data, it compresses the data into a latent space first before 
proceeding with the diffusion process. This study focuses on 
three types of medical data: ophthalmologic data (fundoscopic 
images), radiological data (chest X-rays), and histological data 
(images of stained tissue). The Medfusion architecture 
proposed for this use case showed that the images generated 
from their DDPM was far better than the baseline GAN-
generated images, proving to exceed the results through the 
metrics such as the FID, KID (Kernel Inception Distance), 
Precision, and Recall.  

 Through the results shown on Table 4, we can see how the 
Medfusion model outperforms the StyleGAN-3 model in 
every metric. Something to note is that the Recall results 
(which is a measure of diversity of generated images) are 
extremely low in the GAN models, which indicates that mode 
collapse occurred during training. This is seen when training 
the CRCDX dataset through the cGAN model (with a Recall 
score of 0.02) and the CheXpert dataset through the 
StyleGAN-3 model (with a Recall score of 0.08).  

 

Table 4. Comparison of the different GANs and DDPM given different 
datasets, through the FID, KID, Precision, and Recall metrics [25].  

 

 Qualitatively comparing the results, we can see in Fig 13 
that the comparison between the StyleGAN-3 and Medfusion 
is quite obvious in some cases. Similar to the previous case 
study done by [24], retinal images in Fig 13 (a) were also 
generated for those with glaucoma, and those without. We can 
notice that StyleGAN-3 has an obvious difference in color 
distribution and lack of vessels compared to the real image as 
well as the one generated by Medfusion. Results from Fig 13 
(b) and (c) might be more difficult to qualitatively compare 

for those who are unfamiliar with these scans, but Table 4 still 
indicates the quantitative results in a clearer presentation.  

Fig. 13. (a) Retinal images, (b) Tissue samples, (c) Chest X-Rays [25] 

Fig. 14. Images generated by the GAN models show how mode-collapse has 
affected the results of training. Errors seen are indicated by the green arrows 
[25].  

 Some limitations were present during this study, namely 
the lower resolution images that were used to train the models. 
This was chosen to stay consistent with the GAN results from 
previous studies since this study aimed to compare their 
results to previous studies to showcase the benefits DDPMs 
have over GANs. All of which were proven to show similar 
conclusions, that is that the DDPMs have an advantage over 
GANs. Another detail to note is that the evaluation metrics 
used to compare the images were not made for medical 
images, but instead for natural images. While this may be 
something to consider, we can still note that all the images 
were compared the same way, and also compared 
qualitatively, while the scores were used to better visualize a 
numerical estimate on the comparison between the model. 
However, it is still important to keep that in mind for future 
studies since some metrics might eventually be developed to 
compare medical images in a fairer experiment that might lead 
to a more accurate comparison between medical images. 
  



 

 

 Overall, this research conducted by [25] proved that their 
latent DDPM model outperforms the GAN models once more. 
Medfusion resulted in lower FID scores, better recall scores, 
and did not suffer from any problems regarding convergence 
or training stability, which did occur in some of the GANs 
used as seen in Fig 14. [25] also hypothesized that due to most 
medical images being black and white (or limited in color), as 
opposed to natural images being full of color, it is difficult to 
generate images with higher diversity since most of the details 
lie in small changes in detail and textures. When compared to 
natural images, the medical images still score lower than 
natural images and did not give an equal result in terms of the 
metrics used.  

 Comparing one more case study that conducted similar 
comparisons within the medical field, is one done by [26] for 
brain image generation using latent diffusion models, similar 
to what was done in [25] but with a different dataset and 
slightly different model comparisons. All the case studies 
discussed have the same motivation, that is the lack of large 
medical datasets available to the public for training, costly 
data, difficult to collect and requires expert skills, and ethical 
considerations/privacy concerns. The paper also discusses a 
different method of image generation used in the past, that is 
combining VAEs with GANs to generate various modalities 
of full brain volumes from a small training set to generate 
better results and performances when compared to baseline 
models. The problem with this, however, is that the images 
needed to be resized to a small volume and so the images 
generated did not produce the fine details that were necessary 
for a good comparison. The computational power needed was 
also limiting the results and performance [26]. These 
problems were later reduced when another research conducted 
by [27] proposed a 3D high resolution GAN to produce 3D 
images of thorax CT’s and brain MRI’s at up to 4 times the 
resolution of previous methods. However, the GAN 
limitations are still prominent and is why the research that is 
heavily being conducted nowadays is within diffusion models.  

 This study used a dataset from the UK Biobank of 31,740 
sample images used for training their model. Similar to the 
previous case study, latent diffusion occurs by encoding the 
brain images to a latent space, where the diffusion process 
occurs in (both forward and reverse) and is reconstructed 
using a decoder to the original data space. Qualitatively, this 
model proved to be superior to the baseline GAN models and 
was observed to have comparable images generated at high 
resolution and sharp detail, shown in Fig 15. However, the 
GANs required extra fine tuning when designing the model 
due to the high-resolution nature of MRI images (in 3D as 
well), and still presented issues regarding instability and mode 
collapse.  

 

Table 5. Comparison between different baseline models with the Latent 
Diffusion Model (LDM) proposed in the paper [26]. 

  

 Table 5 shows a quantitative comparison between the 
models. Similar quantitative metrics were also used to 
compare, that is using the FID, but with the added MS-SSIM 
(Multi-Scale Structural Similarity Metric) and the 4-G-R-
SSIM scores (lower is better). We can note that the LDM 
proposed outperforms all the other models during this test and 
comparison, which is to be expected considering the previous 
case studies have shown similar results. We can note that the 
low FID scores indicate that the generated images through the 
LDM was low to indicate realism, and the remaining metrics 
were low to indicate good diversity between the samples 
generated. We can note that a DDIM sampler was combined 
with the proposed LDM. DDIM is Denoising Diffusion 
Implicit Model, which allows for better mapping and efficient 
sampling with fewer iterations. While the DDIM mix with 
LDM showed slightly worse scores (practically negligible), 
the DDIM sampler did reduce the number of timesteps from 
1000 steps to 50, which greatly improves the sampling time at 
almost no cost in the output results.  

Fig. 15. Comparison between the baseline models (top row) with the real 
images and proposed LDM (labelled) [26].  

 The study concluded with the success of their proposed 
LDM for brain image generation of MRI’s. The images 
generated also corresponded to the expected age, sex, and 
brain structure volumes to produce images that were within 
the parameters that were applied.  

 

VIII. CONCLUSION 

The studies explored in this paper showcased many things 
pertaining to generative models. A brief summary was made 
to begin, with the development of earlier generative models, 
their advantages, how they changed the AI scene within their 
time of discovery, as well as their drawbacks. Their 
drawbacks, however, prompted newer, more efficient and 
effective models to be proposed and made to improve upon 
the drawbacks of previously limited models. Namely, the 
GANs, which were increasingly popular throughout the past 
few years and gained lots of traction since its initial proposal 
in 2014 by [6].  The limitations to this model were then noted 
and addressed which resulted in the development of diffusion 
models, with no prominent limitations with even better results. 



 

 

The focus of this paper was also to emphasize the 
importance of generative models in the biomedical field. It 
seems that the rising popularity of diffusion models in 
entertainment might cloud the benefits of other fields that are 
overlooked, which is why this paper was written to gather 
some case studies showing how diffusion models can greatly 
impact the medical field and healthcare. Inspired by the survey 
done in [13] which showcases numerous different articles on 
how diffusion models have been popular within this field, this 
paper was written to showcase the benefits and drawbacks of 
two prominent generative models and compare results based 
on reliable metrics, as well as the performance during this 
comparison between GANs and Diffusion Models.  

The overall results from the three case studies discussed 
showcased that diffusion models are far superior to GANs 
when generating images within the biomedical field. The case 
studies discussed in this paper used datasets that included 
retinal images, brain MRI’s, tissue samples, and chest X-rays. 
All the models trained using the diffusion process outclassed 
GANs in terms of quality and reliability. All the models 
trained using GANs for the datasets discussed also showed to 
have experienced mode collapse and training instability. 
Different methods and variations to the GAN were proposed 
before the discovery of diffusion models, which did improve 
performance of GANs but did not fully remove the risk of 
mode collapse. The proposed GAN variations also required 
extremely fine turning within the design of both the generative 
and discriminative models, as well as hyper tuning parameters 
to optimize the models as best as it can without risking mode 
collapse. This issue was resolved and outperformed by 
diffusion models, which also has numerous different major 
variations, the main one discussed in the paper being the latent 
diffusion model, which takes some similar concepts and 
methods as the VAEs, but with the diffusion process added 
into it.  

In terms of future works, this paper aims to bring 
awareness to the limitations of the medical field when it comes 
to the lack of large datasets that is publicly available, the high 
cost of acquiring labeled data, the expertise needed for 
annotating this data, the ethical and privacy concerns that arise 
when sharing patient data, and the lack of data that is available 
for rare diseases for analysis. This paper has showcased how 
diffusion models can be used to combat these problems, and 
the comparison with previously used models, such as VAEs 
and GANs. Improvements made in this paper could have been 
to add more case studies and technical jargon (such as more 
theoretical detail or math involved in each of the models 
discussed), but to cohesively compare the two models using 
strictly experimental data (both qualitatively and 
quantitatively), this level of detail is sufficient for the scope of 
this paper.  
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